Using Computational Fluid Dynamics to Solve Fluid Flow Problems

NSF-REU Final Presentation

Sarah Inwood,
Michalis Xenos
and Prof. Andreas Linninger

Laboratory for Product and Process Design,
Department of Chemical Engineering, University of Illinois,
Chicago, IL 60607, U.S.A.
Tackle difficult fluid flow problems using computational approaches

Solve problems using computational fluid dynamic (CFD) tools
- Gambit: grid generator
- Fluent: finite volume solver. Solves Navier-Stokes, continuity and energy equations

\[
\begin{align*}
 & u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\
 & u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)
\end{align*}
\]

Use computational codes and finite volume discretization
Benefits

- Apply to industry, mechanics and bio-engineering
- Requires less experiments
- Less error in measurement
- Model fluid transport problems in the brain
- Model reactions
Steps of This Project

- Model basic two-dimensional fluid flow problems
- Model heat diffusion in two-dimensions \(\frac{\partial T}{\partial x} = Bi(T_{\text{inf}} - T_f) \)
- Model species transport problems \(\frac{\partial c}{\partial x} = Bi(C_{\text{inf}} - C_f) \)
- Model liquid reactions
- Model bubble reactions
 - Elliptical bubble
 - 3-D bubble
- Model fluid flow in the brain
Porous Model

Inflow
0.01 m/s

Outflow

Tissue (porous zone)

Capillary

Outflow

Velocity Profile

Velocity Profile w/o high velocities

1.21e-01

1.00e-02

0.00e+00

0.00e+00

0.00e+00

0.00e+00
\[\Delta p = -\left(\frac{\mu}{\alpha} + C_2 \frac{1}{2} \rho \nu^2 \right) \Delta m \]

x-momentum

\[
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + S_x
\]

\[S_x = -\left(\frac{\mu}{\alpha} u + C_2 \frac{1}{2} \rho |u| u \right) \]

\[\alpha \text{ was set to } 1e08, \Delta m \text{ was set to } 0.0001, \text{ and } C_2 \text{ set to } 0 \]

y-momentum

\[
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + S_x
\]

\[S_x = -\left(\frac{\mu}{\alpha} v + C_2 \frac{1}{2} \rho |v| v \right) \]
Bubble Reaction

A + 2B → C + 2D

Velocity Profile

Steady State Reaction with laminar flow

\[
\frac{\partial}{\partial t} (\rho Y_i) + \frac{\partial}{\partial x} (\rho u Y_i) = -\frac{\partial}{\partial x} (\rho D_x \frac{\partial Y_i}{\partial x}) - \frac{\partial}{\partial y} (\rho D_y \frac{\partial Y_i}{\partial y}) + R_i + S_i
\]

- \(R_i\) is the rate of production of species by chemical reaction
- \(S_i\) is the rate of creation by addition from the dispersed phase
Mass Fraction of A

Mass Fraction of B

Mass Fraction of C

Mass Fraction of D
Ellipse Bubble Reaction

- Same boundary conditions as the circular bubble except velocity: 0.1 m/s

Velocity Profile

\[A + 2B \rightarrow C + 2D \]
Preliminary Results of 3-D Bubble
Conclusion about Fluent

- Solves the continuity, navier-stokes, energy equations and species transport equations

- Capable of porous models

- Capable of modeling reactions
 - Allows the user to write his/her own reactions

- User-defined functions are possible to expand Fluent’s capabilities
Acknowledgments

• NSF for funding

• The faculty, post doctoral students and graduate students at the University of Illinois at Chicago.

• Professor A. Linninger

• Dr. M Xenos