Granular Physics: Making Particles and Measuring the Angle of Repose

Becky Carlton
Advisor: Dr. Alan Feinerman
August 3, 2006
Overview

• What is Granular Physics?
 – Study of behavior of many small particles
 – Different from solid or liquid behavior

• Where is it used?
 – Applications in industry
 – Natural phenomena
Project Outline

• Long term project
 – Flow and Angle of Repose
 – Shape, Size, Material, Effective Gravity

• This Summer
 – Method Improvement
 – Manufacturing Particles
 – Preliminary measurements
Accomplishments

• Adjustment of method of production
 – Bed of Nails
 – Electrostatics
 – Simple platform

• Manufactured tens of thousands of identical particles

• Particle analysis
- Particles rough around the edges
- N particles = \(\frac{M}{D/V} \)
- Cutting method is still not optimal

\[
L_1 = 0.0318", \quad L_2 = 0.019", \quad L_3 = 0.016" \\
\text{(reference: } 1/32 = 0.03125)\]

<table>
<thead>
<tr>
<th>Mass Measurements used to calculate total number of collected particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Large Square</td>
</tr>
<tr>
<td>Large Triangle</td>
</tr>
<tr>
<td>Small Square</td>
</tr>
<tr>
<td>Small Hexagon</td>
</tr>
<tr>
<td>Large Hexagon</td>
</tr>
</tbody>
</table>
Angle of Repose Data

- Angle of Repose = $\tan^{-1}(h/r)$
- Carbon Paper Squares
 - Side width = 0.054 in
- Carbon Paper Triangles
 - Side width = 0.073 in

<table>
<thead>
<tr>
<th>Particle Type</th>
<th>Carbon Paper Squares</th>
<th>Carbon Paper Squares</th>
<th>Carbon Paper Triangles</th>
<th>Carbon Paper Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Radius (cm)</td>
<td>1.237</td>
<td>2.497</td>
<td>1.237</td>
<td>2.497</td>
</tr>
<tr>
<td>Avg. Height (cm), Ten trials</td>
<td>1.26</td>
<td>2.25</td>
<td>1.33</td>
<td>2.22</td>
</tr>
<tr>
<td>Angle of Repose (deg)</td>
<td>45.5</td>
<td>42.0</td>
<td>47.2</td>
<td>41.7</td>
</tr>
</tbody>
</table>
Future Direction

• Suggestions
 – Make intermediate sizes
 – Cut circles and ovals
 – Reconsider the bed of nails

• A lot remains to be done
 – Different materials
 – Tens of microns down to nanometers
 – Increased gravity
 – poly-disperse collection of particles
Acknowledgements

• NSF-REU Program, NSF EEC-0453432 Grant
• DoD-ASSURE Program
• Novel Materials and Processing in Chemical and Biomedical Engineering
• Dr. Christos Takoudis
• Dr. Alan Feinerman
• Dr. Paul Dolan
• Tatjana Dankovic
• Kathy Augustyn
• Denisa Melichian
References