Growth of Y_2O_3 and HfO_2 as Single Compounds and as Nanolaminates on Si using Atomic Layer Deposition

Adam Kueltzko

Thornton Fractional North High School

July 31st, 2008

University of Illinois at Chicago

Advanced Materials Research Laboratory (AMReL)

Mentors: Dr. G. Jursich and Dr. C.G. Takoudis

Departments of Bioengineering and Chemical Engineering
Motivation for Research

• To work with new high dielectric constant (k) materials such as HfO$_2$ and Y$_2$O$_3$ to replace SiO$_2$ in micro- and nano-electronics

• To run experiments in the atomic layer deposition (ALD) reactor and to examine thin film growth rates

• To analyze the resulting thin films on silicon using spectral ellipsometry, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM).
Hypotheses

- A self-limiting reaction between an yttrium precursor, a hafnium precursor, an oxidizer, and the silicon substrate

- Good film uniformity on the substrate (using a spectral ellipsometer)

- Absence of organic compounds in the resulting film structures (using FTIR spectroscopy)

- Stoichiometry of the high-k material and the bonding states of the elements (using XP Spectroscopy)
New High-k Dielectric Materials

- Last summer and through the following school year work was conducted with Hafnium and Yttrium

- Hafnium oxide has a k value of 20-25

- Yttrium oxide has a k value of 15-18
Why co-deposition?

- Enhances dielectric constant
- Aids in the size minimization of semiconductor devices
Atomic Layer Deposition (ALD)

- Uses pulses of gaseous reactants (precursor and oxidizer) alternately fed into the reactor
- Produces atomic control
- Film thickness depends on number of deposition cycles
ALD Process

- “One Cycle”
- Precursor
- Purge (N$_2$)
- Oxidizer (H$_2$O)
- Purge (N$_2$)

http://www.cambridgetech.com/
Acceptable Temperature Window

- ALD reactions usually occur between 200-400 °C in the reactor
- Above 400 °C, the chemical bonds are not stable and the precursor may decompose
- Below 200 °C, the reaction rate may be reduced

[Diagram showing the acceptable temperature window]
Properties of the Precursors

- $\text{Y(CpCH}_2\text{CH}_3\text{)}_3$ -- tris(ethylcyclopentadienyl) yttrium
 - Vapor pressure: ~ 60 mTorr @ $100 \degree C$
 - Decomposition temperature: $> 350 \degree C$
 - Melting point: $38 \degree C$
- Hf[N(C₂H₅)₂]₄ -- tetrakis(diethylamino)hafnium
 - Boiling point: 130°C
 - Density: 1.22g/ml
 - Appearance: dark yellow liquid

Experimental Conditions

- ALD Reactor
 - Precursor A (Hafnium): 65 °C
 - Precursor B (Yttrium): 120 °C
 - Reactor: 250 °C

Y_2O_3 Growth Rate vs. Precursor Dosage

Y$_2$O$_3$ Growth Rate vs. Reactor Temperature

XP Spectra of Y_2O_3 on Si

Quantification Results

Y Atomic Concentration %: 39.2
O Atomic Concentration %: 60.8

O:Y = 60.8/39.2 = 1.5

Therefore Y_2O_3 was produced on the substrate.
Surface Morphology (AFM)

rms roughness ~.4 nm which is below 1% film thickness

HfO$_2$ Growth Rate vs. Precursor Dosage

Growth rate (Å/cycles) vs. Number of precursor pulses per ALD cycle.
HfO$_2$ Growth Rate vs. Purge Time

Growth rates (Å/cycles) vs. Purge time after moisture pulse (s)
HfO$_2$ and Y$_2$O$_3$ Growth Rate vs. Reactor Temperature

Growth rates (Å/cycles) vs. Reactor temperature (°C)

Overlap (250-285 °C)

Y$_2$O$_3$ ALD window

HfO$_2$ ALD window

- HfO$_2$
- Y$_2$O$_3$
Low Temperature Deposition of HfO$_2$

- Joint effort to deposit Hafnium Oxide onto polymer nanofibers
 - Nanotubes
 - Physical properties ...compression
 - Electrochemical properties

- Low temperature needed to prevent vaporization
 - below 60 °C
HfO$_2$ Average Thickness

After 50 cycles

![Graph showing the average thickness of HfO$_2$ after 50 cycles as a function of reactor temperature.](image)
Hurdles

- Lower temperature needed to prevent vaporization
 - Room temperature not controllable
- Try 30 °C
- Fibers getting broken apart - substrate placement in the reactor
 - Slow change in air pressure and purging reduces fiber movement
 - Substrate holder moved away from reactor feed to reduce purge pressure coming from manifold
Cross Section of Reactor

All measurements and temperatures are the same as in previous slide
Findings

- Placement of fibers in the back of the vacuum chamber did not produce any encouraging results

- Fluid dynamics were changed

- Grated metal sheets were tried

- Ended up with steel envelope
Future Work

• Analysis of samples using FT-IR to determine composition of deposition

• Teaching module / all school lab
different classes have different inquiries
References

Acknowledgements

- DOD and NSF-EEC 0755115 and NSF-EEC 0839043
- Mentors: Dr. Greg Jursich and Dr. Christos Takoudis
- Doctoral students: Prodyut Majumder and Manish Singh
- Dr. Alex Yarin and Suman Sinharay
- Qian Tao
- K.C. Kragh